Overview of SUNY Research Enterprise and Quantum Research Capacity

Grace Wang
Senior Vice Chancellor for Research and Economic Development
SUNY
SUNY Leads in Research

64
Campuses

424 K
Degree Seeking Students

$13 Bn
Annual Operating Budget

14
Doctoral Degree Granting Institutions

13
University Colleges

7
Technology Colleges

30
Community Colleges

18
Incubators and Accelerators (NYSERDA Funded)

6
SUNY Centers for Advanced Technology

7
SUNY Centers of Excellence

22
Small Business Development
SUNY Research Enterprise

$1.6 Bn Annual R&D Expenditure (FY 2017)

2,700 Principal Investigators

7,100 Projects
SUNY Innovation Activities

Ranks #30 among worldwide universities for U.S. granted utility patents in 2018

1,522 Issued Patents

717 Active License Agreements

110 Active Startups

18 Incubators
SUNY Economic Impact

$28.6B
IN NEW YORK STATE ANNUALLY, 2015-16
(1.9 percent of gross state product)

$8.17
RETURN ON INVESTMENT for every $1 of state funding

34%
SHARE OF EDUCATED WORKFORCE WITH A DEGREE FROM SUNY
30,600 Students
$401 M Annual R&D (FY 2017)
26,000 Students

$238 M Annual R&D (FY 2017)
Binghamton University
State University of New York

17,300 Students
$98 M Annual R&D (FY 2017)
3,000 Students
$309 M Annual R&D (FY 2017)
SUNY Medical Schools and Hospitals

4 Medical Schools
3 Hospitals
$2.8 Bn Annual Revenue
9 M Unique Patient Records
SUNY Quantum Research and Education Capacity

- Quantum Materials, Devices and Packaging
- Quantum Information Science
- Quantum Enabled Research Frontiers

Quantum Sensing, Quantum Communication, Quantum Computing

Quantum-Smart Workforce
Quantum Materials, Devices and Packaging
Superconducting Materials

Growth, characterization applications (e.g. Josephson Junctions) of superconducting films (such as YBa$_2$Cu$_3$O$_7$, NbN, MoN, and TiC).

Refs:

Quanxi Jia et. al. (Currently at University at Buffalo)
Quantum Qubit Fabrication & Measurement

- Wafer-scale, high-quality qubit fabrication in SUNY Poly 300mm facility
- Collaboration with AFRL and NIST

Papa Rao et.al., SUNY Polytechnic Institute
Center for Heterogeneous Integration Research in Packaging (CHIRP)

- Thermal Management
- Holistic Scaleout Designs Within Heterogeneous Packages
- Power Delivery and Power Management Systems
- Minimizing Thermal Interfacial Resistance
- Alternative Fine Pitch Interconnect Technologies

Bahgat Sammakia (Center co-Director), Binghamton University
In collaboration with Purdue University
Computational and Experimental Tools for Next-gen Nanoelectronics Packaging

Electromigration and Thermomigration Reliability

All Graphene Nano Ribbon TFET Switch

Molecular Dynamics

Cemal Basaran (Center Director), University at Buffalo
Benefits of AIM Photonics TAP Facility

- 300mm wafer compatibility
- Die attach for 2.5D and 3.0D packaging
- Automated fiber attach
- High speed automated Electro-optical testing
- Metrology for process capability evaluation
- MPW Compatibility
- Custom wafer compatibility
Quantum Information Science
Theoretical analysis of a nearly optimal analog quantum search

Carlo Cafaro1 and Paul M Alsing2

Published 4 June 2019 • © 2019 IOP Publishing Ltd

Physica Scripta, Volume 94, Number 8

International Journal of Quantum Information

| Vol. 17, No. 03, 1950025 (2019)
| Research Paper

Continuous-time quantum search and time-dependent two-level quantum systems

Carlo Cafaro and Paul M. Alsing
Superdense teleportation using hyperentangled photons

Trent M. Graham, Herbert J. Bernstein, Tzu-Chieh Wei, Marius Junge & Paul G Kwiat

Nature Communications 6, Article number: 7185 (2015) | Download Citation

Spontaneous emission of matter waves from a tunable open quantum system

Ludwig Krinner, Michael Stewart, Arturo Pazmiño, Joonhyuk Kwon & Dominik Schneble

Nature 559, 589–592 (2018) | Download Citation
In collaboration with BNL, ORNL, Stockholm, and Padova.

Possible NY partners: AIM Photonics, AFRL.
Quantum Computing Enabled New Research Frontiers
Informatics Driven Discovery of Quantum Materials

References:
MRS Bulletin 43; (Sept.2018): Data centric science for materials innovation; I Tanaka, K.Rajan & C. Wolverton ;
Predicting New High-Energy Compounds

Artem R. Oganov et. al., Stony Brook University

Hafnium nitride (HfN10) structure. Credit: MIPT
Faulty Genomic Pathway Linked to Schizophrenia

“... could lead to treatments for pregnant mothers at risk for bearing children with the disease.”
-- NSF

Michal K. Stachowiak, et. al., University at Buffalo
SUNY Quantum Research and Education Capacity

Quantum Materials, Devices and Packaging

Quantum Information Science

Quantum Enabled Research Frontiers

Quantum Sensing
Quantum Communication
Quantum Computing

Quantum-Smart Workforce
Disclaimer

The information contained in this document is confidential and intended only for the information of the recipient and may not be used, published or redistributed without the prior written consent of the State University of New York (SUNY). The opinions expressed and information enclosed are made in good faith and while every care has been taken in preparing this document, SUNY, its employees and affiliates cannot be held responsible for the use of and reliance of the opinions, estimates, forecasts and findings in this document.