Quantum Information Science: The Way Ahead

Col Timothy Lawrence – Director, AFRL Information Directorate

July 2019
USAF QIS Strategy: Context

• Aspects of QIS are maturing beyond purely theoretical
 – Many engineering challenges remain
 – Still expect new concepts to emerge

• Known implications for USAF operational capabilities
 – Mid-term: timing and sensing
 – Far-term: computing, communications and networking

• AF S&T is informing and leveraging broader DoD, government, academic, industry and international efforts
Quantum-Enabled Air Force Capabilities

- Zero GPS Age of Data (aka error) with Entangled Clock Network with Quantum Repeaters
- Secure Encryption
- Tanker or Bomber
- Time Transfer - Complete Data Fusion Possible
- Carrier Strike Group
- Bunker/Tunnel Detection with Advanced Sensors
- Rapid Actionable Information with Quantum Computation of Data
- Long Duration Unaided Inertial Navigation
- Low Probability of Intercept Communications

Approved for Public Release [Case # 88ABW-2019-0236] Distribution Unlimited
Quantum Capabilities for the AF
Quantum Information Science at AFRL

RD: Satellite-based Quantum Communication and Networking and Optical Channels (Gruneisen; NM)
RV: Position, Navigation, Timing (Metcalf, Olson, Robertson, Squires; NM)
RX: Diamond Color Centers, Materials, Supply Chain (Bissell, Eyink, Reed, Urbas; OH)
RY: Quantum emitters, Device fabrication (Lutwak, Bergfield, Usechack; OH)
AFOSR: 6.1 Basic Research funding in QIS (Metcalf; DC)
GPS precision in GPS-denied environments - Timing

Mid-Term Clock Objectives:
- Improved stability in static conditions
- Volume: 500 Liters

Long-Term Clock Objectives:
- Improved stability in dynamic conditions
- Volume: few Liters

Current Status:
- Stability: 10^{-9} sec/day (static conditions)
- Volume: 10 Liters

GPS timing updates – several times per day

Mid-term Concept

Long Term

High performance mobile clocks & networks distribute accurate timing

Fewer timing updates – mobile clocks hold time for weeks to a month

Chip-scale atomic clock

Space clock

Approved for Public Release [Case # 88ABW-2019-0236] Distribution Unlimited
GPS precision in GPS-denied environments - Sensors

Current Status:
- 100's meters/hour
- Volume: 100 – 1,000 liters

Mid-Term Sensor Objectives:
- Reduced sensor noise
- Moderate volume

Long-Term Sensor Objectives:
- Quantum limited sensor noise
- Highly portable

GPS-like accuracy for >1 hr

GPS-like accuracy for multiple hours

Mid-term Concept

Today

Northrop RLG
WSN-7 INS for ships
(Strategic)
Quantum-enabled PNT Strategic Challenge

• “Five Eyes” international partnership
 – United States, United Kingdom, Canada, Australia, New Zealand

• Develop a challenge problem for navigation in GPS-challenged environments
 – Use of alternative PNT technologies including quantum sensors and clocks

• Goal – Demonstrate new capabilities in 2022 on a ship-board platform
Global Assured Communications: Satellite-based Quantum Networks

Mid-Term Payload Objectives:
• Key Rate: > moderate

Long-Term Payload Objectives:
• Entanglement Rate: > high (bright)

Current Status:
• Prototyping and field testing components
• Beginning payload studies

Global-scale entangled network demonstration

Quantum Key Distribution (QKD) Field Demo in Relevant Environment

Enables tamper-proof, point-to-point communication with immediate intrusion detection and day/night operation

Approved for Public Release [Case # 88ABW-2019-0236] Distribution Unlimited
Global Assured Communications: Ground- and Air-based Quantum Networks

Current Status:
- Nodes: 2

Mid-Term Node Objectives:
- Nodes: > 3

Long-Term Node Objectives:
- Nodes: > 5

Entanglement distribution testbed and proof-of-concept ad-hoc network capability

Mid-term Concept

Critical tech field demo of a multi-node, memory-based ground network connected to a UAV

Today

- No memory available at network nodes

Memory Node

Quantum Circuit

Fully-quantum transmission ensures data integrity throughout network and provides immediate intrusion detection

Investigate entanglement distribution between ground-to-ground and ground-to-air platforms

Field Site

UAV Field Site

Approved for Public Release [Case # 88ABW-2019-0236] Distribution Unlimited
Faster Algorithms for AF Needs: Quantum Computing and Algorithm Development

Mid-Term QC Objectives:
- Develop/test/evaluate algorithms to train neural networks

Long-Term QC Objectives:
- Develop advanced algorithms for machine learning, optimization, and material discovery on most-current commercial devices

Have experienced algorithm team; partner with national testbed facilities to test algorithms on available devices

Current Status:
- Investigate programming languages and available algorithms

Coding to hardware – each system unique

IBM Experience User Interface

Today

- Neural network
- Object recognition

Optimization, faster training of neural networks, material discovery

Long Term

- Form algorithm test and development team to test/vet commercial devices

Commerially-available platforms

- IBM
- IonQ
- Rigetti

Optimization for multi-domain command and control
Summary

• AF QIS strategy on pathway to enable game changing capabilities in 2035 timeframe
 – Mid-term outcomes: tech maturation for timing and sensing
 – Long-term outcomes: tech maturation for communications and networking; computing algorithms
 – Strategy includes partnerships, workforce development, supply chain
Questions?