MEMORANDUM

November 20, 2019

TO: Members of the Board of Trustees

FROM: Kristina M. Johnson, Chancellor

SUBJECT: Appointment of Distinguished Professors

Action Requested

The proposed resolution appoints the faculty members listed below to the rank of Distinguished Professor at the State University of New York campus indicated.

Resolution

I recommend that the Board of Trustees adopt the following resolution:

Whereas the Board of Trustees has proudly established a historic tradition of acknowledging and honoring extraordinary faculty achievement through appointment to the Distinguished Faculty Rank; and

Whereas the appointment to Distinguished Faculty Rank at the State-operated campuses is both a system-wide distinction and a promotion in rank; and

Whereas the SUNY Board of Trustees has the authority to bestow system-wide distinctions; now, therefore, be it

Resolved that each faculty member listed below be, and hereby is, appointed to the rank of Distinguished Professor at the State-operated campus indicated, effective November 20, 2019:

Professor David R. Holtgrave, State University of New York at Albany;

Professor Kanad Ghose, State University of New York at Binghamton;
Board Resolution

Professor John L. Crassidis, State University of New York at Buffalo;

Professor Krishna Rajan, State University of New York at Buffalo;

Professor Xiuxiong Chen, State University of New York at Stony Brook;

Professor Howardena Pindell, State University of New York at Stony Brook; and

Professor Stanislaus S. Wong, State University of New York at Stony Brook.

Background

Appointment to the rank of Distinguished Professor recognizes and honors faculty who have achieved national and/or international prominence and a distinguished reputation within their chosen field. This distinction is attained through extraordinary contributions to, and impact on, the candidate’s field of study, often evidenced by significant research and/or creative activity. Moreover, the candidate should be a role model for students and other faculty and their work must be of such character that it has the potential to elevate the standards of scholarship or creative activity of colleagues both within and beyond their academic fields. Their work must be of such quality that students and scholars on other State University of New York campuses would wish to benefit from lectures and seminars, or other appropriate presentations the faculty members might provide. Further, to be eligible for nomination, a faculty member must have attained and held the rank of full professor for five years, and must have at least one year of full-time service at the nominating institution.

These individuals have contributed meaningfully and consistently in several notable areas, including extensive and superior service to the profession; leadership and ongoing participation on influential disciplinary committees; membership on prestigious editorial boards; service as reviewer or consultant on regulatory, advisory, and award-making bodies; and status as an invited presenter at conferences and symposia. The candidates are also often considered outstanding teachers, setting the highest academic standards for their students.

Brief summaries of the accomplishments of each candidate are provided below:

Professor David R. Holtgrave – Dr. Holtgrave, Dean of the School of Public Health at the University at Albany and a SUNY Empire Innovation Professor, is an internationally recognized leader in HIV prevention, policy, and delivery of services. His research has focused on the effectiveness and cost-effectiveness of HIV prevention interventions and the translation
of those study findings to HIV prevention policy. He has produced over 300 publications, including five books or National Academy of Medicine reports. He has served as director of the Division of HIV/AIDS Prevention- Intervention Research and Support at the Centers for Disease Control and Prevention (CDC) as well as vice-chair of the Presidential Advisory Council on HIV/AIDS under President Obama. Dr. Holtgrave testified before the U.S. House of Representatives during a hearing on domestic HIV prevention. An Overseas Fellow of the United Kingdom’s Royal Society of Medicine, Dr. Holtgrave has served on the Joint United Nations Programme on HIV/AIDS. The CDC has acknowledged his contributions with the “Award for Outstanding Leadership in Behavior Science and HIV Prevention” and the “Charles C. Shepard Science Award,” its highest scientist award.

Professor Kanad Ghose – Dr. Ghose, Professor of Computer Science at Binghamton University, co-founded and directs the Binghamton Center for Energy Electronic Systems, a National Science Foundation Industry-University Cooperative Research Center that yields research expenditures over $1 million per year. With 24 patents in building energy-efficient systems, he has attracted a $12 million Defense Advanced Research Projects Agency (DARPA) award and more than $6 million in federal, state, and industrial grants. He is co-author of two conference papers cited over 400 times each, “Analytical energy dissipation models for low power caches (1997),” and “MARSS: a full system simulator for multicore x86 CPUs (2011),” and his overall scholarly contributions have been cited over 1500 times. A recipient of the SUNY Chancellor’s Premier Inventor Award, Dr. Ghose also received the SUNY Chancellor’s Awards for Excellence in Scholarship and Creative Activities and for Excellence in Faculty Service. A Fellow in the National Academy of Inventors, Dr. Ghose serves as chair for the Institute of Electrical and Electronics Engineers (IEEE) Roadmap Committee on Heterogeneous Integration for High-Performance Computing and Data Centers and as editor of IEEE’s most selective journal, *Transactions on Computers*.

Professor John L. Crassidis – Dr. Crassidis, the Samuel P. Capen Chair Professor in the Department of Mechanical and Aerospace Engineering at the University at Buffalo (UB), has received 65 grants totaling $36.5 million. He has written 239 journal and conference publications, two textbooks, and also served as co-author of the textbook, *Optimal Estimation of Dynamic Systems*, considered the standard reference. Dr. Crassidis directs UB’s Center for Multisource Fusion, the only U.S. fusion center, with an annual revenue of $10 million. Founder and director of the UB Nanosatellite Laboratory that designs satellites for the Air Force and NASA, Dr. Crassidis was the first to research practical and innovative solutions to resident space object attributes and to determining air leaks. He was the principal investigator on two NASA Reduced Gravity Education Flight Program missions and served as chair of the American Institute of Aeronautics and Astronautics (AIAA) Guidance Navigation and Control Technical Committee, and General Chair of the Malcolm D.
Shuster Astronautics Symposium. The AIAA gave Dr. Crassidis the Mechanics and Control Flight and Sustained Service Award.

Professor Krishna Rajan – Dr. Rajan, the Erich Bloch Chair and Empire Innovation Professor in the Department of Materials Design and Innovation at the University at Buffalo’s (UB), has advanced the field of materials informatics by applying data science tools to nano-vaccine design; coupling new data mining and processing tools to accelerate materials design; discovering new superalloys; and pioneering quantitative methods in atom-scale chemical imaging. Dr. Rajan has secured $37.5 million in grants and research funding, and $2.9 million in a National Science Foundation (NSF) grant to establish UB’s Materials Data Engineering Laboratory. He has served as director for the NSF’s International Materials Institute; as a member of the National Committee on Data Science and Technology and the Army Research Laboratory’s National Academy of Sciences’ Material Science and Engineering Panel Laboratory, as well as a member of task committees for the National Renewable Energy Laboratory and the National Academies of Sciences, Engineering and Medicine. Dr. Rajan is the founding editor-in-chief of *Materials Discovery Journal*.

Professor Xiuxiong Chen – Dr. Chen, a professor in the Department of Mathematics at Stony Brook University, is a mathematician of the first caliber, who in the last several years has made transformational contributions to the field of complex differential geometry as well as the most important breakthrough in Kähler geometry in the past forty years. He found a groundbreaking *a priori estimate* for Kähler metrics. With Sir Simon Donaldson and Song Sun, Dr. Chen proved the Donaldson Tain-Yau conjecture, the existence of special metrics on complex manifolds of positive curvature. In 2019, Dr. Chen received the Oswald Veblen Prize in Geometry, the field’s most prestigious honor given every three years by the American Mathematical Society. Dr. Chen along with Dr. Bing Wang, solved two long-standing problems: the Hamilton-Tian conjecture on the limiting metric of Kähler-Ricci flow, and a fundamental result on the existence of constant scalar curvature Kähler metrics. A Fellow of the American Mathematical and Society, Dr. Chen is a Simmons Fellow in Mathematics. He has received a $500,000 Simons Foundation Investigator Award, a prestigious five-year award given to a few distinguished scientists at the heights of their careers.

Professor Howardena Pindell – Dr. Pindell, a professor in the Department of Art at Stony Brook University, brings a powerful voice for social justice to her pioneering conceptual art. She utilizes gridded, serialized imagery, along with surface texture, throughout her work, powerfully addressing social issues of homelessness, AIDS, war, genocide, sexism, xenophobia, and apartheid. In 1967, Dr. Pindell was the first appointed female African-American curator at the Museum of Modern Art (MOMA). In 1972, she co-founded the A.I.R. Gallery, the first artist-directed gallery for female artists in the United States. Dr. Pindell’s work
has been shown at the Metropolitan Museum of Art, the Museum of Contemporary Art, MOMA, the National Gallery of Art, the Museum of Fine Arts, the Pennsylvania Academy of the Fine Arts, the Smithsonian Museum of American Art, and the Whitney Museum of American Art. She has received the top awards in her field: a Guggenheim Fellowship (1987); the Most Distinguished Body of Work or Performance Award from the College Art Association (1990); the Distinguished Contribution to the Profession Award from the Women’s Caucus for Art (1996); and two National Endowments for the Arts Fellowships. She is considered to be one of the most significant artists of the second half of the 20th century.

Professor Stanislaus S. Wong – Dr. Wong, a professor in the Department of Chemistry at Stony Brook University, has founded new approaches for the synthesis of metal oxide nanomaterials, novel strategies for adding chemical functionalities to carbon nanotubes, and innovative environmentally friendly solvents and processes. With $8 million in research funding, he has produced over 170 publications with 20,000 citations and 20 patents. Across his career, he has fostered collaboration with Brookhaven National Labs. A Fellow of the American Association for the Advancement of Science and the Royal Society of Chemistry, Dr. Wong has received the American Chemical Society Inorganic Award, a Sloan Fellowship, the Buck-Whitney Award, and a National Science Foundation CAREER Award. In 2018, SUNY granted him the SUNY Chancellor’s Award for Excellence in Scholarship and Creative Activities. Dr. Wong has served as the Executive Editor of *ACS Applied Materials and Interface*, as a Section Editor for *Nanotechnology*, and as a member of the Editorial Advisory Board for *Chemistry of Materials*.

A copy of the nominating letter from each candidate’s respective campus president is attached. Complete dossiers are available in the Office of the Provost and Senior Vice Chancellor.

Attentions
September 9, 2019

Dr. Tod A. Laursen
Senior Vice Chancellor and Provost
State University of New York
State University Plaza
Albany, New York 12246

Dear Dr. Laursen:

On behalf of the University at Albany, State University of New York, I am delighted to endorse and transmit the enclosed materials to nominate Dr. David R. Holtgrave for promotion to the rank of Distinguished Professor. As outlined in the dossier, and enthusiastically supported by each of the highly respected external evaluators, Dr. Holtgrave has surpassed the level of distinction that we expect of our Distinguished faculty. Dr. Holtgrave joined the University at Albany faculty in 2018 as the Dean of the School of Public Health and SUNY Empire Innovation Professor, a designation that reflects his demonstrated excellence in research and significant external funding. Immediately prior to arriving at Albany, Dr. Holtgrave served as the Founding Chair of the Department of Health, Behavior and Society at the Johns Hopkins University's Bloomberg School of Public Health, where he was also the inaugural endowed Health, Behavior and Society Professor.

Over the course of his nearly thirty-year career, Dr. Holtgrave has produced an exceptional record as a scholar, has served his communities and nation through countless instances of public engagement, and has earned an outstanding international reputation as a leader in the field of HIV prevention, policy, and delivery of services. In his short time at the University at Albany, his ongoing research and global standing among his peers have already contributed enormously to the School of Public Health’s reputation and attracted national and international attention to the University at Albany and the State University of New York for excellence in research, instruction, graduate student preparation, and service.

The scholarly record outlined in Dr. Holtgrave’s CV is nothing short of remarkable. He has produced over 300 publications, including some 250 peer-reviewed articles, three dozen chapters to edited volumes, and five books or National Academy of Medicine reports. The external evaluators comment on the impact of two of these, in particular. First is the co-authored book, Improving Access to HIV Care: Lessons from Five U.S. Sites, which was published by Johns Hopkins University Press. The second is an edited volume, Handbook of Economic Evaluation of HIV Prevention Programs, which received strong praise in multiple scholarly outlets.

Dr. Holtgrave’s career includes appointments in both government and academia. At the Centers for Disease Control and Prevention, he quickly rose through the ranks until he was appointed Director of HIV/AIDS Prevention (1997-2001). As Dr. Amy Lansky, Senior Advisor for Strategy at the CDC and former Director of the White House Office of National AIDS Policy under President Obama, explains in her letter: “He held this role at a critical time in the HIV epidemic in the United States, just after combination therapy was determined effective. Dr. Holtgrave’s role as Director for Intervention Research and Support was important for guiding the agency’s behavioral and social science research as the field moved from a crisis response mode to building and implementing ongoing prevention and care programs.”
The importance of Dr. Holtgrave's scholarly contributions within the federal government at this critical time is echoed by Dr. Sten Vermund, the Anna M.R. Lauder Professor of Public Health and Dean of the Yale School of Public Health, who offers: "In the service arena, Dr. Holtgrave is generous and effective." He continues, "as much as anyone in the U.S. government at the time, Dr. Holtgrave added HIV care and treatment to the prevention agenda, recognizing that, as with STIs and TB, finding and effectively treating HIV-infected persons was a superb HIV strategy."

Within the field of HIV prevention, Dr. Holtgrave has distinguished himself as an authority on three central areas – decision analysis, behavioral science, and—the work for which he is perhaps best known—cost-effectiveness in delivering HIV prevention and policies. Indeed, his reputation in this area has resulted in countless government agencies and public policy centers requesting his assistance in developing effective and efficient policies and services to improve the lives of those living with HIV and to prevent its spread. From local and state health departments to the CDC, Dr. Holtgrave has provided invaluable evidence-based guidance on how to best utilize limited resources to deliver the most effective services and programs.

At the national level, Dr. Holtgrave served on the Presidential Advisory Council on HIV/AIDS (2010-2016) in the Obama administration, and was appointed the Council’s Vice-Chair in 2014. He served on the Institute of Medicine’s Committee on State of the USA Health Indicators and as a member of the US Department of Health and Human Services Expert Panel on Costs and Benefits of Preventive Health Services. He presently serves on the board of AIDS United and on the Advisory Group for the Academic Public Health Leadership Institute, among contributions to many other national organizations.

Internationally, Dr. Holtgrave has served as a member of the Joint United Nations Programme on HIV/AIDS and was selected as an Overseas Fellow with the United Kingdom’s Royal Society of Medicine. Here in New York, Dr. Holtgrave was appointed by Governor Andrew M. Cuomo to the Governor’s Adult-Use Regulated Marijuana Working Group and to the Governor’s Hepatitis C Elimination Task Force. By all measures, Dr. Holtgrave’s research and expertise have helped local, state, national, and international agencies assess the effectiveness of programs and policies, as well as tracking their progress toward desired outcomes. This level of influence and practical application of scholarship is what marks Dr. Holtgrave’s distinguished career.

Dr. Holtgrave has received multiple national awards and honors for his commitment to the public good and the incorporation of his research findings, which have had a widespread and substantial impact. Among these are the “C. Everett Koop National Health Award” from The Health Project and the “Award for Outstanding Leadership in Behavior Science and HIV Prevention” from the CDC. Perhaps the most notable among these honors was his nomination for the “Charles C. Shepard Science Award,” which is the highest scientific award at the CDC. Dr. Holtgrave has also received awards from organizations that serve the populations who benefit from his research. He received the 2011 “Positive Leadership Award” from the National Association of People with AIDS and AIDSWatch, and was recognized as one of the top 100 AIDS fighters on POZ Magazine’s “POZ 100” list in 2010.

In addition to the quality and impact of his research, Dr. Holtgrave has been successful in receiving dozens of external research grants, contracts and gifts. He has continued to receive grants while also serving as Dean of the School of Public Health, presently holding three active external grants from the National Institutes of Health, the National Institute of Mental Health, and from the FinishIT anti-tobacco campaign.
Dr. Holtgrave has also established a reputation as an engaged and valued teacher and mentor, both at the University at Albany and at his prior institutions. While at Johns Hopkins University, he was awarded the "Golden Apple Award" for outstanding teaching. As the Dean of the School of Public Health, his commitment to excellence in instruction and graduate student training has continued.

The accompanying dossier provides a more detailed portrait of Dr. Holtgrave's substantial achievements. Also included are detailed statements from respected and distinguished scholars in the field, selected with a view toward their own individual reputations and ability to comment on Dr. Holtgrave's reputation and the impact of his work. A curriculum vitae or description for each consultant is also included. Lastly, we provide the candidate's detailed curriculum vitae.

Upon reviewing the materials included in this dossier, I trust you will agree that Dr. Holtgrave possesses the attributes and has achieved the stature required and expected for elevation to the rank of Distinguished Professor. I look forward to a positive outcome on this case, and hope that you will contact me should you require any additional information.

Thank you for your consideration of this exceptional faculty member.

Sincerely,

[Signature]

Havidán Rodriguez
President
September 4, 2019

Dr. Tod Laursen, Provost and Senior Vice Chancellor
Office of Academic Affairs, Room S-525
State University of New York System Administration
State University Plaza, 353 Broadway
Albany, NY 12246-2915

Dear Tod,

In recognition of his pathbreaking achievements and international renown as a scholar, educator, and inventor, I enthusiastically endorse the nomination of Kanad Ghose, Professor of Computer Science in the Thomas J. Watson School of Engineering and Applied Science at Binghamton University, for promotion to Distinguished Professor in the State University of New York. This nomination is amplified by widespread support from SUNY Distinguished Professors, departmental colleagues, and administrative officers at Binghamton University, and by a global network of other eminent academics, all of whom substantiate Professor Ghose’s powerful influence across the academic and industrial worlds of computer science.

The transformative body of research that Professor Ghose has developed centers on high-performance computer architecture and networking, with continual attention to energy efficiency in power-aware computer systems, along with invaluable discoveries in experimental simulation for microprocessor design, practical solutions to biometric monitoring and drone navigation, and thorough protocols for system security. Professor Ghose’s distinguished influence and expertise are measured by a singular record of frequently-cited publication in some of the most competitive, peer-reviewed conferences and journals in computer science, and through extensive governmental, institutional, and corporate funding support, as well as numerous U.S. patents, for sustained applications of his forward-thinking scholarship.

Vision and Innovation from a “Trailblazer” and “Thought Leader” in Computer Science

In the 1990s, from the early stages of his thirty-year career at Binghamton University, Professor Ghose was already working to solve a multi-layered computing problem not on the radar of most scientists in the industry or academia: energy efficiency. As a leader in the comparatively small scholarly community of computer architects and micro-architects, he pursued realization of significant energy savings at the micro-level, in processor design and function, and at the macro-level, in networking and server architecture, especially in power-hungry—and, now, ubiquitous—data processing centers. While many other computer scientists necessarily pursue the perennial goals of high-performance processing results, regardless of cost, Professor Ghose has steadily applied novel solutions to energy resource management as a system-wide driver for simultaneous savings in time, personnel, finances, and the environment.
The distinguished status that Professor Ghose holds as an inventor among computer scientists and industry leaders is exemplified in three of his many trailblazing efforts in energy efficient computer systems. Fully one quarter of his twenty-four registered patents, for example, stem from a seminal 2010 filing that recognizes his process for reducing energy waste in data center servers. The U.S. Air Force and the National Nano-Bio Manufacturing Council for the Flextech Alliance have supported multiple phases of development for his group’s smart power, bandage-sized patch for ECG biometric monitoring in real time. Among his most influential studies was a 2011 paper, cited in more than 400 top conference proceedings and journals, that launched an open source, virtual simulator for testing power loss and performance in microprocessors from the industry-leading Intel family; this invaluable tool has been downloaded and applied to great effect more than 1400 times since its release.

The continuous stream of public and private funding for Professor Ghose’s primary research projects measurably qualifies and quantifies the impact of his scholarly productivity in a wide-ranging array of applications. Within the past decade, he has co-founded and served as the Binghamton University Site Director for the Center for Energy-Smart Electronic Systems, a National Science Foundation Industry-University Cooperative Research Center (I/UCRC) partnership between five universities and an ever-expanding group of twenty-two industries. This immensely productive center has been supported through multiple phases to yield research expenditures in excess of $1M per year. Likewise, his particular interdisciplinary success as a computer architect and security expert helped attract a nearly $12M DARPA award for himself and co-PIs from Lockheed-Martin to develop the hardware for a more secure microprocessor to check vulnerabilities in current software. In the past five years alone, Professor Ghose’s research has attracted over $6M in federal, state, and industrial grants.

Recognition, Regard, and Reputation

Recognition for the distinctive quality of Professor Ghose’s lifetime of achievement in applied science has accrued to him across his career, from his graduate school acknowledgement as a Phi Kappa Phi honoree and Boeing Research Fellow, to his mid-career success as a SUNY Chancellor’s Premier Inventor and awardee for Excellence in Scholarship and Creative Activities, and more recently as a SUNY Chancellor’s awardee for Excellence in Faculty Service, and most significantly, as a socially transformative Fellow in the National Academy of Inventors. His distinguished leadership in the IEEE has shown in multiple areas: most prominently, his recent designation as chair for its Roadmap Committee on Heterogeneous Integration for High-Performance Computing and Data Centers, where he guides its thirty-member body of industry representatives to develop computing policy for the international community; and his editorship of its most selective journal, *Transactions on Computers*.

For nearly twenty of his incredibly productive years at Binghamton University, Professor Ghose served as a transformative chair of his department, mentoring and challenging colleagues to exceed the highest standards of quality in the profession and gain recognition for his program, school, and university. He is also known as an excellent educator, having directed 85 master’s students and 21 PhD’s with 10 more working on his teams now, a leading indicator of the
continuous growth in his research portfolio and his global reputation for excellence in scholarly production.

For the many times that Professor Kanad Ghose has conceived, imagined and pioneered ways to benefit society and improve lives through persistent attention to energy efficiency, for his diligent, rigorous research investigating thorny problems in need of innovative solutions, and for his transformative leadership, recognized and respected by a global community of colleagues in academia, students in the laboratory, and industry leaders in the field, he is most worthy to be promoted to the rank of SUNY Distinguished Professor. As a representative of the academy and the State of New York, his ambassadorship has always represented the best values of this state’s public mission to its own people, and all peoples of the world. Professor Kanad Ghose has most certainly followed a distinguished path already, and we know he has much more to contribute and reflect on as a Fellow in the SUNY Distinguished Academy.

Sincerely,

Harvey G. Stenger
President
September 12, 2019

Dr. Tod A. Laursen
Provost and Senior Vice Chancellor
State University Plaza
353 Broadway
Room S525
Albany, NY 12246-2915

Dear Provost Laursen:

It is my pleasure to endorse and forward the dossier of John Crassidis, PhD, the Samuel P. Capen Chair Professor in the Department of Mechanical and Aerospace Engineering in the University at Buffalo's School of Engineering and Applied Sciences, for appointment to the rank of SUNY Distinguished Professor. A fellow of the American Institute of Aeronautics and Astronautics and the American Astronautical Society, Dr. Crassidis is considered "among the top five researchers, worldwide, in spacecraft estimation and control." Praised by his peers for his work on control, estimation theory and filtering as applied to nonlinear stochastic dynamical systems, Dr. Crassidis has made numerous findings that have had a profound impact on space situational awareness, space navigation, and space station safety. In particular, his research has improved the detection and tracking of man-made objects orbiting the Earth, helped keep astronauts safe during space missions and provided new research directions for the U.S. Department of Defense that have the potential to provide even greater protection of our country’s assets in space.

Dr. Crassidis earned his PhD in Mechanical Engineering from the University at Buffalo in 1993. From 1989 to 1994, he held several research assistant and consulting positions in private companies and research organizations including Bell Aerospace Textron, the Ford Motor Company, the National Transportation Research Board and the Calspan-UB Research Center (CUBRC). From 1994 to 1996, Dr. Crassidis was a postdoctoral research fellow at the National Research Council Tenable at NASA's Goddard Space Flight Center. He accepted his first faculty appointment in 1996, when he was hired as an Assistant Professor in the Department of Mechanical Engineering at the Catholic University of America. In 1998, he was appointed Assistant Professor in the Department of Aerospace Engineering at Texas A&M University. In 2001, Dr. Crassidis joined the faculty at UB as an Assistant Professor, rising to the rank of full Professor in 2007. Appointed as the CUBRC Professor in Space Situational Awareness at UB in 2013, he received the prestigious designation of Samuel P. Capen Chair Professor in his department in 2018. The Associate Chair of the Department of Mechanical and Aerospace Engineering since 2012, Dr. Crassidis is also the founder and director of the University at Buffalo Nanosatellite Laboratory (UBNLS) and director of the Center for Multisource Information Fusion (CMIF).

A prolific researcher, Dr. Crassidis has 259 journal and conference publications to his name, as well as two textbooks, resulting in approximately 8,000 citations and an h-index of 36, per Google Scholar. When one considers that the classified nature of Dr. Crassidis' work prevents wide dissemination of his scholarship, these metrics are all the more impressive.
Continuously funded for his research since 1999, Dr. Crassidis has garnered an astonishing 58 grants totaling $29 million on which he has served or serves as the Principal Investigator or Co-PI. These grants come from a wide range of sources including the National Science Foundation, NASA, the Office of Naval Research, the Air Force Office of Scientific Research, the Air Force Research Laboratory, the Missile Defense Agency and Northrop Grumman Corporation. Currently, Dr. Crassidis is the PI on seven grants totaling $7.5 million. He is also the co-author of *Optimal Estimation of Dynamic Systems*—a textbook now in its second edition, considered “the standard reference in its field” for practicing aerospace engineers working on estimation projects.

As the director of UB’s CMIF—the only dedicated fusion center in the United States, with annual revenues of about $10 million per year—Dr. Crassidis has been the program manager for an education partnership agreement between UB and the Air Force Research Lab’s Directed Energy and Space Vehicles Directorates. He has made significant contributions to CMIF by collaborating with several governmental agencies and companies to advance satellite attitude determination systems, inertial navigation and defensive capabilities. Further, he was the principal investigator on two NASA Reduced Gravity Education Flight Program missions—which were based on his research into relative attitude determination—and on UB’s Air Force University Nanosat Program and NASA’s CubeSat Initiative. In his role as founder and director of UB/NL, he currently supervises more than 40 students across several disciplines to build various subsystems for the UB satellite.

Among Dr. Crassidis’ numerous early-career discoveries and innovations, he developed a novel solution for determining air leaks on the International Space Station (ISS). Prior to his breakthrough, emergency air-leak procedures involved a time-consuming process of elimination that could put astronauts in catastrophic danger. Dr. Crassidis improved this inefficiency by determining the resulting torque imposed on the ISS from an air leak, and then estimating the location of the leak based on the torque. John L. Junkins, PhD, Distinguished Professor of Aerospace Engineering and Royce E. Wisenbaker ’39 Chair in Innovation at Texas A&M University, notes that Dr. Crassidis’ approach “tells the astronauts which modules to check first and, more importantly, estimates the most likely locations of the air leak within the module. Furthermore, the solution is fully autonomous. Dr. Crassidis’ algorithm was tested using decompress data from the space shuttle, and his approach correctly identified the location of the decompress valve.” The paper describing Dr. Crassidis’ approach, Junkins adds, was selected from 225 submissions as the best at the 2001 conference at the Guidance, Navigation and Control Conference of the American Institute of Aeronautics and Astronautics (AIAA GN&C).

Dr. Crassidis has worked very closely with the U.S. Air Force, NASA and other agencies to monitor space debris, which threatens satellites and future space missions. As there is currently no cost-effective way to remove space debris, Dr. Crassidis is working to improve how we track the thousands of resident space objects (RSOs) that orbit the Earth. Dr. Crassidis developed novel approaches to determine RSO attributes—such as shape, mass spin state, relative inertia and material properties—from non-resolved photometry. Attribute estimation is critical to observing RSOs because the particular attribute influences the dynamics of the object and may provide valuable information on the object’s origin or intent. For long-term propagations of orbits, this approach is particularly helpful in estimating the
probability of collision with other objects. Dr. Crassidis' innovative work is based on using non-resolved imagery to determine the attributes. Although researchers have attempted a similar strategy, theirs requires that the attitude of the RSO be known a priori, which is not practical for an actual system. Dr. Crassidis' research initiatives led to the development of approaches that do not require any a priori knowledge. Along with several of his students, he has proved that his concept is viable; experimental trials have shown promising results and attracted funding to bring his initial concept from a basic research level to a practical system.

Commenting on the critical importance of this research is Michael D. Griffin, PhD, the United States Undersecretary of Defense for Research and Engineering, and a member of the National Academy of Engineering. "Dr. Crassidis was the first researcher to develop a practical solution to determine the shape of a space object from non-resolved images," he writes. "His approach was tested and validated by the Air Force using data from several satellites, illustrating that his developments can be used to provide a more complete picture of the makeup of debris objects. This will yield improved tracking capabilities, which in turn will provide better collision probability calculations with active satellites."

Dedicated to serving his profession, Dr. Crassidis was a member of the AIAA GN&C Technical Committee from 1997 to 2008, serving at different times as the chair, secretary, and education subcommittee chair. Colleagues laud Dr. Crassidis as "instrumental" in establishing the AIAA GN&C Graduate Award, soliciting applications and selecting winners. Dr. Crassidis also led the development of a Student Design Competition. He organized and served as General Chair of the Malcolm D. Shuster Astronautics Symposium and the F. Landis Markley Astronautics Symposium and sat on the organizing committee of the Itzhack Y. Bar-Itzhack Memorial Symposium on Estimation, Navigation, and Spacecraft Control in Haifa, Israel. Further, Dr. Crassidis served on the Technical Program Committees of the 17th and 18th International Conference on Information Fusion. And, he was the Technical Co-Chair of the 2000 AIAA GN&C Conference and General Chair of the 2003 conference.

From 2005 until 2017, Dr. Crassidis served as associate editor of the AIAA's Journal of Guidance, Control, and Dynamics (JGCD); since 2017, he has served as deputy editor. He was also guest editor of the JGCD's special issue titled The Kalman Filter and its Aerospace Applications. The AIAA recognized Dr. Crassidis' excellence by honoring him with the Mechanics & Control of Flight Award in 2012 and, in 2006, the Sustained Service Award.

An extraordinary teacher and mentor, Dr. Crassidis has trained 17 successful doctoral students, many of whom are now in key academic and industry positions. He has also supervised 52 master's students and has served as a committee member for dozens of PhD and master's thesis presentations. He has also mentored more than three dozen undergraduate students, three postdoctoral researchers and six visiting scholars.

As an aforementioned elected fellow of both the AIAA and the American Astronautical Society, Dr. Crassidis is a scientist of significant stature in the GN&C spacecraft community—a fact that led to his appointment as lead reviewer of NASA's Engineering and Safety Center GN&C Technical Discipline. In this role, he assessed all GN&C operations for every NASA Center and made recommendations to NASA managers to improve their safety operations. He currently serves as a Core Member of this group.
Dr. Crassidis is held in the highest regard for the impact of his research, teaching, and service. Summing up his international standing is Yaakov Oshman, ScD, Louis and Helen Rogow Chair in Aeronautical Engineering in the Department of Aerospace Engineering at Technion-Israel Institute of Technology and a fellow of both the American Institute of Aeronautics and Astronautics and the Institute of Electrical and Electronic Engineering.

“Prof. Crassidis has consistently embodied everything that is at the highest level of excellence through his record of scholarly innovations, publications, funding, impact, and dissemination. He has developed a multidisciplinary research program that continues to be one of international acclaim and sustained distinction,” writes Dr. Oshman. “Prof. Crassidis has made a permanent and immeasurably positive impact on his field and on the thousands of people working in his field.”

Together, with his colleagues at the University at Buffalo and around the world, I concur with these assessments. Dr. Crassidis' exceptional record of scholarship, teaching and service has been a tremendous asset to the University at Buffalo and to SUNY, and his impact on his field has been unparalleled. I give his nomination to the rank of SUNY Distinguished Professor my full and wholehearted recommendation.

Sincerely,

Satish K. Tripathi
President
September 12, 2019

Dr. Tod A. Laursen
Provost and Senior Vice Chancellor
State University Plaza
353 Broadway
Room S525
Albany, NY 12246-2915

Dear Provost Laursen:

It is my pleasure to endorse and forward the dossier of Krishna Rajan, ScD, for appointment to the rank of SUNY Distinguished Professor. Dr. Rajan is the Erich Bloch Chair and Empire Innovation Professor in the Department of Materials Design and Innovation (MDI) in the University at Buffalo’s School of Engineering and Applied Sciences. The founding chair of MDI, Dr. Rajan is a world-renowned expert in the field of materials informatics who has made numerous original and high-impact contributions in this area. In particular, he has received international acclaim for his seminal research applying information science and data-intensive methodologies to the discovery, quantification and numerical modeling of a range of structural and functional materials. Over the course of his career, Dr. Rajan has remained at the forefront of materials research that addresses broad scientific and technological issues and has led to the development of innovations in areas ranging from drug delivery to superalloys.

Earning his ScD in materials science from the Massachusetts Institute of Technology in 1978, Dr. Rajan held post-doctoral appointments from MIT and Cambridge University between 1978 and 1980. A research staff scientist at the National Research Council of Canada from 1980 to 1987, he also was an adjunct professor of biomaterials at the University of Ottawa School of Medicine from 1982 to 1984. In 1987, Dr. Rajan joined the Reasselaer Polytechnic Institute as an Associate Professor of Materials Science; he was promoted to Professor in 1993. In 2005, Dr. Rajan accepted the post of Professor of Materials Science and Engineering at Iowa State University, where he also served as the Stanley Chair of Interdisciplinary Engineering and the inaugural Wilkinson Professor of Interdisciplinary Engineering. While still at Iowa State, Dr. Rajan joined the U.S. Department of Energy’s Ames National Laboratory as an associate research scientist (2011-2015). Upon joining UB’s faculty in 2015, Dr. Rajan was tasked with building UB’s Department of Materials Design and Innovation, which has placed UB and SUNY at the forefront of materials research and innovation. Thanks to Dr. Rajan’s leadership, faculty are revolutionizing materials research, the result of which has reduced the time from discovery to design and deployment from two decades to five years. This achievement has been possible by integrating theoretical and numerical simulations with informatics and physical simulations. As an established expert and leader in all three of these areas, Dr. Rajan was a natural fit to oversee the creation of this department.

Dr. Rajan’s scholarly research has resulted in numerous innovations that have profoundly influenced his field of study. Along with computational studies, he is recognized for advancing quantitative methods for the interpretation of nanoscale chemical imaging techniques, such as atom probe tomography. By applying statistical learning to materials discovery, he has greatly refined the field of materials informatics. Further, by employing the data mining tools that he
developed and integrating them with high-throughput experimentation, he has significantly accelerated the design of experiments and novel formulations for materials ranging from catalysts to biomaterials.

Placing perspective on the profound impact Dr. Rajan has had on his field is Dr. Stefano Curtarolo, a fellow of American Physical Society; professor of Materials Science, Physics, Chemistry and Electrical Engineering; and Director of the Center for Materials Genomics at Duke University. Dr. Rajan’s work “has laid the foundation and developed formal methods for integrating data science to materials theory, simulation and experimentation,” Dr. Curtarolo writes. “The integration has enabled the development of new directions for scientific exploration in materials science and engineering.”

A prolific scholar, Dr. Rajan has garnered nearly three dozen grants totaling close to $29 million as a Principal Investigator or Co-PI. Funding sources have included the National Science Foundation, the National Institutes of Health, the U.S. Department of Energy, the U.S. Department of Defense and private industry. Since arriving at UB four years ago, he has secured more than $8.5 million in research funding, including a $2.9 million NSF grant to establish UB’s Materials Data Engineering Laboratory. To date, Dr. Rajan has published six books, more than 300 peer-reviewed articles and over 20 invited book/encyclopedia chapters and review articles. In addition, he has been the editor of 12 special issues for journals. Dr. Rajan has delivered more than 300 invited presentations around the world, including at the Tata Institute of Fundamental Research (Bombay), the IBM T.J. Watson Research Center (New York), and the Max-Planck-Institut für Metallforschung (Stuttgart).

Among Dr. Rajan’s most significant scholarly contributions to the field of materials science in the past 15 years, peers cite three: his application of data science tools to the design of nanovaccines; his coupling of new data mining and processing tools with high-throughput physical experiments to accelerate materials design; and his development of new superalloys with improved strength, toughness and stability.

Dr. Rajan’s work in the area of piezoelectric materials has had immense technological applications in automotive technology, information technology, medicine and the military. He initiated a new approach to develop alternative computational-based methods that help refine the chemical search space and identify potentially new and promising piezoelectric materials for high-temperature applications. Using this method, he discovered and designed two piezoelectric perovskites with the highest transition temperature reported among similar compounds—a breakthrough first published in *Proceedings of the Royal Society* in 2011. Using the same strategy, Dr. Rajan discovered that amphiphilic nanoparticles possess pathogen-mimicking properties as evidenced by their activation of dendritic cells. His approach demonstrates how to rationally design pathogen-mimicking nanoparticle adjuvants for use in next-generation vaccines against emerging and re-emerging diseases. Further, Dr. Rajan’s method to develop structure maps for crystal chemistry was deemed so profound that the International Union of Crystallography named it one of the key contributions to structural chemistry in 2011.

Dr. Roger T. Howe, the William E. Ayer Professor of Electrical Engineering at Stanford University, a fellow of IEEE and a member of the National Academy of Engineering, further elucidates the significance of Dr. Rajan’s research.
His “informatics-driven discovery of high-temperature piezoelectric materials is motivating intense experimental research around the world, given their important applications in high-temperature sensors and actuators,” Dr. Howe writes. “In contrast to the semi-empirical approach that has been the only option for piezoelectric materials discovery, Krishna has provided the field with a set of ‘navigational aids’ that will save tremendous amounts of both time and money.”

Dr. Rajan is praised for his seminal innovations that have accelerated the design of experiments to discover new superalloys. Using data-driven methodology, he has created a fundamentally new process to identify new stable alloys with enhanced high-temperature properties. Dr. Rajan’s group has created nearly two dozen new superalloys, many of which have properties such as improved stability, oxidation, and high ductility and strength ratios. His methodology can be applied to many material systems and re-created for different design objectives. Along with data mining tools, Dr. Rajan also developed the visualization of high-dimensional combinatorial catalyst data, permitting visualization of larger chemical space than previously possible. This approach is helping establish the application of data mining techniques to unravel the complexity of combinatorial experiments.

Dr. Roya Maboudian, professor of Chemical & Biomolecular Engineering at the University of California at Berkeley, and the Editor of the *IEEE Journal of Microelectromechanical Systems*, is effusive in her praise of Dr. Rajan’s groundbreaking work. “He is the undisputed leader in the field of materials informatics,” Dr. Maboudian writes. “By developing advanced data mining tools and coupling them with high throughput combinatorial experiments, he has been able to accelerate the design of experiments, materials and chemistries.”

In the area of atom probe tomography, Dr. Rajan has made significant advances—both in data analysis and instrumentation advancement—owing to his combination of expertise in both chemical imaging and data science. His ability to merge seemingly disparate fields has led to unprecedented acceleration in materials design. For instance, he designed and developed the first prototype of a specimen transfer system for the atom probe to carry out in situ-type experimental studies on the interactions between gases and the first few nanometers of metal surfaces, which are critical to understanding how materials may degrade in-service and uncovering fundamental surface reaction mechanisms. This seminal scholarship has broad implications in a diverse range of applications including microelectronics, heterogeneous catalysis, and engineering alloys in corrosive and/or oxidizing environments. A prototype cell is currently being produced by several research labs and companies.

AAAS fellow Dr. Balaji Narasimhan, the Anson Marston Distinguished Professor in Engineering and the Vlasta Klima Balloun Chair at Iowa State University, holds Dr. Rajan in the highest regard for his many innovations and seminal breakthroughs in materials science. “Throughout his career, Dr. Rajan has made numerous original and high impact contributions in the areas of data science and informatics approaches for the discovery, characterization and modeling of novel materials,” Dr. Narasimhan writes “He has also pioneered the use of quantitative methods in atom-scale chemical imaging methodologies.”
Dr. Rajan has provided extraordinary leadership to the materials informatics community in the United States and Canada for more than 30 years. From 2002 to 2009, he served as director for the NSF's International Materials Institute. What's more, he has served on several task committees of the National Renewable Energy Laboratory and the National Academies of Sciences, Engineering and Medicine. Dr. Rajan has served as a member of the National Committee on Data Science and Technology and the Army Research Laboratory's National Academy of Sciences' Material Science and Engineering Panel Laboratory. Further, he has received significant recognition from the scientific community by serving as the founding editor and editor-in-chief of *Materials Discovery Journal*.

A dedicated teacher and mentor, Dr. Rajan has graduated more than 40 MS and PhD students in his academic career and has supervised 50 postdoctoral researchers.

Widely recognized for his numerous seminal achievements, Dr. Rajan has received honors and awards including the Alexander von Humboldt Award (Germany, 2015), the CISRO-Australia Distinguished Visiting Scientist Fellowship Award (2011) and the Akinc Faculty Research Award (Iowa State University, 2009).

Encapsulating the academic excellence and profound impact that Dr. Rajan has had on his field is Dr. Susan Sinnott, professor and department head of Materials Science and Engineering at the Pennsylvania State University and a fellow of the Materials Research Society, the American Physical Society, the American Association for the Advancement of Science and the American Ceramic Society. "Professor Rajan has had a significant impact on materials science and engineering," she writes. "His work has already elevated the standards of scholarship and advanced the field of materials science and engineering."

Lauded as "a leader and evangelist for computational material design" whose pioneering work on materials informatics "places him among the very best material scientists and engineers in the world," Dr. Rajan has enhanced the profile and reputation of UB and SUNY through his distinguished scholarship. I wholeheartedly concur with the assessments put forth by Dr. Rajan's peers, and I enthusiastically support and recommend his nomination to the rank of SUNY Distinguished Professor.

Sincerely,

Satish K. Tripathi
President
September 3, 2019

Dr. Tod Laursen
Provost and Senior Vice Chancellor
System Administration
State University Plaza
Albany, New York 12246

Dear Provost Laursen, Tod

I am delighted to endorse the nomination of Professor Xiuxiong Chen for the position of SUNY Distinguished Professor.

Prof. Chen received his Ph.D. from the University of Pennsylvania in 1994, followed by two postdoctoral appointments at McMaster University and Stanford University. Prof. Chen began his academic career as an Assistant Professor at Princeton University, later moving to the University of Wisconsin Madison, where he became a Professor in 2005. Prof. Chen joined the Stony Brook faculty in the Department of Mathematics in 2010.

Prof. Chen’s research focuses on the differential geometry of complex manifolds, a large and highly competitive field. Within this community, Prof. Chen has made multiple breakthrough contributions. In collaboration with Donaldson and Sun, Prof. Chen proved the Donaldson-Tian-Yau conjecture, which posits that the existence of a Kähler-Einstein metric with positive constant on a given compact Kähler manifold X is equivalent to the stability of X. This had been a long-standing challenge in differential geometry: the equivalence was expected to be true but had been extremely difficult to prove. The solution was considered by many in the field to be among the most important contributions to differential geometry of the past forty years. In recognition of this work, Prof. Chen received the Oswald Veblen Prize in Geometry in 2019, given every three years by the American Mathematical Society and among the most prestigious honors in the field. Together with Wang, Prof. Chen also solved the Hamilton-Tian conjecture, dealing with the limiting metric of Kähler-Ricci flow, which required new approaches for treatment of elliptical systems of non-linear partial differential equations. In addition to the Veblen Prize, Prof. Chen is a Fellow of the American Mathematical Society...
and a Simons Fellow in Mathematics. He is a dedicated mentor, serving as an advisor to 17 Ph.D. students and 8 postdoctoral students. His former students have gone on to faculty positions at UC Berkeley, University of Wisconsin Madison, University of Oregon, and University of Science and Technology of China.

Prominent scholars speak of Prof. Chen’s work in the strongest terms:

- [Solving the Donaldson-Tian-Yau conjecture]... was a watershed moment in differential geometry. Robert L. Bryant, Phillip Griffiths Professor of Mathematics, Duke University
- [The Hamilton-Tian conjecture]... was really like a lightning bolt out of a clear blue sky. Duong H. Phong, Professor of Mathematics, Columbia University
- X.X. Chen is one of the world leaders in Kähler geometry... [He] is extremely deserving of Stony Brook’s distinction of Distinguished Professor both in terms of his many extraordinary research achievements and in terms of his fantastic mentorship of younger mathematicians. Tobias Holck Colding, Cecil and Ida Green Distinguished Professor and Pure Mathematics Chair, Massachusetts Institute of Technology
- Professor Xiuxiong Chen is one of the current world masters of Kähler geometry. I believe there is no exaggeration to say that his work has revolutionized this domain of mathematics. Jean-Pierre Demailly, Chaire de Géométrie Analytique, Université Grenoble Alpes

Professor Xiuxiong Chen is an eminent mathematician who has tackled among the most difficult and central problems in his field. I fully support his nomination to the rank of SUNY Distinguished Professor.

Sincerely,

Michael A. Bernstein, Ph.D.
Professor of Business, Economics, and History
Interim President
September 3, 2019

Dr. Tod Laursen
Provost and Senior Vice Chancellor
System Administration
State University Plaza
Albany, New York 12246

Dear Provost Laursen,

I enthusiastically endorse the nomination of Howardena Pindell for appointment to the position of SUNY Distinguished Professor.

Prof. Pindell is a groundbreaking conceptual artist, with a prolific career of creative work that spans painting, drawing, mixed-media, photography, film, and written commentary. She received her BFA from Boston University and her MFA from Yale University. In 1967, she was appointed as a curator at the Museum of Modern Art, the first African-American woman to hold this position. By the time Prof. Pindell joined the faculty at Stony Brook in 1979, she was already an internationally-recognized artist and curator. Her solo exhibitions have been held at Spelman College, Vassar College, Just Above Midtown (NYC), and the Art Academy of Cincinnati. Prof. Pindell co-founded the A.I.R. Gallery, the first artist-directed gallery for female artists in the United States.

Over the past four decades at Stony Brook, Prof. Pindell produces influential creative work at an impressive rate, expanding into video and examination of social issues. Her pieces have been shown at major museums, including the Metropolitan Museum of Art, the Museum of Contemporary Art, the Museum of Modern Art, the Museum of Fine Arts, the Pennsylvania Academy of the Fine Arts, the Museum of Fine Arts, the National Gallery of Art, the Smithsonian Museum of American Art, and the Whitney Museum of American Art. She has balanced her remarkable productivity with teaching and mentoring students. Several of her former MFA students, including Athena LaTocha, Sang-Ah Suh, David Nelinson, Lorena Salcedo-Watson, and Amy Bagshaw, have gone on to impressive careers as artists and scholars. Prof. Pindell’s work has been recognized with the top awards in her field, including a Guggenheim Fellowship (1987), the Most Distinguished Body of Work or Performance Award from the College Art Association (1990), the Distinguished Contribution to the
Profession Award from the Women's Caucus for Art (1996), and two National Endowment for the Arts Fellowships.

Prominent colleagues comment on the visionary nature of Prof. Pindell's work and on her tremendous impact:

- Pindell, 76 years old and one of the most significant artists of the second half of the 20th century and into the present, is only now receiving the praise and recognition earned during a career spent exploring the threshold between abstract expression and social relevance. . . . Although Pindell did not set out on her path 50 years ago to change art history, she has done just that. Christopher Bedford, Dorothy Wallace Wagner Director, The Baltimore Museum of Art

- Howardena Pindell's extensive exhibition record speaks for itself . . . her work has been featured in many landmark museum exhibitions. Richard J. Powell, John Spencer Bassett Professor of Art and Art History, Duke University

- Pindell has made transformative contributions to the field of art, cultural activism, and postcolonial critique. Throughout her career, she has been an innovative contributor to the language of abstract painting and a fearless advocate of social justice in the arts. Coco Fusco, Professor and Banks Preeminence Chair in Art, University of Florida

- [Pindell's] seminal [Free, White and 21] has been an influence for over two generations of moving image artists, many of whom have cited this film as a catalyst for not only their own practices, but also for the ways in which it was key to the turn toward the acceptance of video as a fine art medium. Courtney J. Martin, Deputy Director and Chief Curator, Dia Art Foundation; as of Fall 2019, Director, Yale Center for British Art

Professor Howardena Pindell is a pioneering artist, a powerful voice for social justice, and a dedicated mentor and educator. I fully support her nomination to the rank of SUNY Distinguished Professor.

Sincerely,

Michael A. Bernstein, Ph.D.
Professor of Business, Economics, and History
Interim President
August 20, 2019

Dr. Tod Laursen
Provost and Senior Vice Chancellor
System Administration
State University Plaza
Albany, New York 12246

Dear Provost Laursen,

I am very pleased to endorse the nomination of Professor Stanislaus S. Wong for the position of SUNY Distinguished Professor.

Prof. Wong received his Ph.D. from Harvard University in 1999, followed by a year of postdoctoral training at Columbia University. He joined Stony Brook in 2000 as a joint faculty member in the Department of Chemistry and at Brookhaven National Laboratory. Dr. Wong became a Professor in the Department of Chemistry in 2010.

Professor Wong’s research is at the interface of inorganic chemistry and nanomaterials science. He has pioneered new approaches for the synthesis of metal oxide nanomaterials with precise control over size and shape. Prof. Wong has also developed novel strategies for adding various chemical functionalities to carbon nanotubes. Moreover, several of the synthetic approaches Prof. Wong has innovated are based on environmentally friendly solvents and processes, facilitating sustainable production of these materials. He has received about $8M of research funding, and his research program is both highly productive and impactful, resulting in over 170 publications, 20,000 citations, and 20 patents. Prof. Wong has been recognized by his community with the American Chemical Society (ACS) Inorganic Nanoscience Award, the Buck-Whitney Award, a National Science Foundation CAREER Award, and a Sloan Fellowship. He is a Fellow of both the American Association for the Advancement of Science (AAAS) and of the Royal Society of Chemistry. Prof. Wong was a recipient of the SUNY Chancellor's Award for Excellence in Scholarship in 2018.
Prof. Wong has demonstrated leadership in his professional field, serving as Executive Editor of *ACS Applied Materials and Interfaces* and a Section Editor for *Nanotechnology*. He has also been a member of the Editorial Advisory Board for *Chemistry of Materials*. He is a dedicated mentor, serving as an advisor to 22 Ph.D. students, 3 postdoctoral students, and over 60 undergraduates. Prof. Wong's former students have gone on to faculty positions at Texas A&M University, Fordham University, Manhattan College, and University of Arkansas. Finally, Prof. Wong has been instrumental in building and maintaining strong ties between Stony Brook University and Brookhaven National Laboratory, organizing numerous meeting and events.

Scholars comment on Prof. Wong's scientific work and achievements, noting:

- *Stan is one of the world's leading authorities in the preparation of nanoparticles, nanotubes, nanowires and other nanoparticles with desired chemical or physical properties.* George C. Schatz, Morrison Professor of Chemistry, Northwestern University
- [Prof. Wong's research on the osmylation of carbon nanotubes] work represented a milestone in our community. Maurizio Prato, Professor of Chemistry, University of Trieste, Italy
- *Prof. Wong's methods of synthesizing perovskite nanoparticles produce the highest quality nanostructures reported to date... He is making a major impact in this field and importantly most of his synthetic methods focus on green chemical approaches.* Wayne L. Gladfelter, Distinguished Professor of Chemistry, University of Minnesota

Professor Stanislaus Wong is a productive and prominent scholar. I fully support his nomination to the rank of SUNY Distinguished Professor.

Sincerely,

Michael A. Bernstein, Ph.D.
Professor of Business, Economics, and History
Interim President